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LE'ITER TO THE EDITOR 

Gravitational wave dispersion in condensed matter systems 

A Widomt, G Megaloudist, T D Clark$ and R J Prance$ 
t Physics Department, Northeastern University, Boston, Massachusetts, USA 
$Physics Laboratory, University of Sussex, Brighton, Sussex, England 

Received 16 March 1981 

Abstract. The complex index of gravitational wave refraction in condensed matter systems 
is related to the viscosity response function. Simple applications are discussed for gravita- 
tional wave propagation in fluids and crystals. 

An engineering problem of considerable importance is the design of electro-mechanical 
systems which are sensitive enough to measure the deviations from Newtonian gravita- 
tional theory implied by general relativity (Gravitazione Sperimentale 1974). In 
previous work (Widom et a1 1981), we considered the effects of static space-time 
metrics on superfluid flows. Here, we shall discuss gravitational wave metrics. 

In the engineering design of electromagnetic wave detectors, it is useful to relate the 
complex index of refraction to the electrical conductivity (at complex frequency 5 )  of 
the condensed matter. In terms of the dielectric response function this relation reads 
(Von Hippel 1966) 

~ ( l )  = 1 + (47d l ) id f ) .  (1) 
Here, it will be shown that the complex index of gravitational wave refraction N ( l )  is 
related to the viscosity of the condensed matter ~ ( 1 )  via 

N 2 ( l )  = 1 + (16.rrG/c21)iq([), (2) 
where G is the gravitational coupling constant and c is the speed of light. 

To prove equation (2), we consider the metric of space-time in the transverse 
traceless gauge (Misner eta1 1973), i.e. the gravitational wave is represented by a spatial 
non-Euclidean strain tensor 

ds2 = c 2  dt2- ldrI2-2 d r  * + dr, (3a) 
div + = 0, 

Tr+=O.  

The sources of the spatial gravitational strains are the transverse traceless parts of the 
spatial stresses (Foster and Nightingale 1979) 

(V2-a2/c2 at2)+ = (8rG/c4)u. (4) 
The constitutive equation which relates stress to strain in condensed matter systems 
defines a non-local viscosity (Landau and Lifshitz 1975) operator by 

U = $(2a+/at). ( 5 )  
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For spatially isotropic condensed matter systems, and for wavelengths large on the 
length scale of atomic separations, equations (4) and ( 5 )  read in frequency space 

( N 2 ( f ) 1 2  + C 2 V 2 ) +  = 0, (6) 

which establishes N ( f )  in equation (2) as the proper gravitational wave index of 
refraction. A few applications will suffice. 

An isotropic fluid of mass density p has a kinematic viscosity U defined by 

pv = lim Re q(o +io+). 
W + O  

(7) 

For an isotropic crystal it is more common to use the elastic Lam6 coefficient response 
function 

P.0  = -ifv(l). (8) 
Such crystals can support transverse sound waves at velocity ut determined by 

(9) 2 put = l i m R e p ( o + i O * ) = l i m w  Imq(w+iO+). 
W-bO W + O  

We note, in passing, that if equations (1) and (2) for the square of the index of refraction 
are compared, then normal fluids act on gravitational waves analogously to the way that 
conductors act on electromagnetic waves. Further, crystals act on gravitational waves 
analogously to the way that superconductors act on electromagnetic waves. We shall 
return to this point, but here recall that the definition of the London penetration depth 
h L  for static magnetic fields in terms of the electrical conductivity a([ )  is given by 
(Tinkham 1961) 

( c / A ~ ) ’  = 4.rr lim w Im a ( w  +io’) (10) 
W + O  

and compare equations (9) and (10). 
A gravitational wave will propagate with the speed of light in a viscous fluid, 

WQ = CQ, (11) 

y = (8.rrGpv/c2) (12) 

as long as the damping rate 

is sufficiently small, y << wQ. In theory, there exists a strongly overdamped regime 
y >> wQ where the induced fluid stress modes cause the non-Euclidean spatial defor- 
mations to diffuse. The appropriate diffusion coefficient is given by 

D = ( c 2 / 2 y )  = (c4/16rrGpv).  (13) 

The gravitational wave index of refraction in a crystal when transverse sound waves 
propagate without damping is given by 

N 2 ( t )  = 1 - (fl,2/12), 

fli = (16rrGpv:/c2). (15) 

0’0 =c2Q2+f l i .  (16) 

(14) 
where the gravitational wave ‘plasma frequency’ is determined as 

Physically, equation (14) implies a gravitational wave dispersion relation of the form 
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We now return to our analogy with electromagnetic waves within bulk superconduc- 
tors; there, the dispersion relation is given by 

0: = c2Q2 + ( c / A ~ ) ~ ,  (17) 

where A L  is the London penetration depth. 
From the viewpoint of quantum gauge field theories (Weinberg 1965, Feynman 

1963, De Witt 1967), equations (16) and (17) have the following interpretation: (i) 
equation (17) implies that a photon within a superconductor ‘grows a mass’; (ii) 
equation (16) implies that a graviton within a crystal ‘grows a mass’. The mechanism by 
which such Boson masses appear is a phase transition into a condensed matter state 
which breaks gauge symmetry by appropriately ordering. In the case of superconduc- 
ting ordering, the induced current is proportional to the vector potential in the 
London-Coulomb gauge. In the case of crystal ordering, the induced stress is propor- 
tional to the spatial metric strain in the transverse traceless gauge (this is the evident 
meaning of elasticity coefficients). Given the analogy, it is clear that crystals should have 
a penetration depth in which induced stresses screen out gravitationally non-Euclidean 
spatial transverse metric strains. The penetration depth A is given by 

A-2 = (16?~Gpzl:/c~), (18) 
where p is the mass density and ut is the transverse sound velocity within the crystal. 

One of the authors (A W) would like to thank Professors Y Srivastava and M Friedman 
for an interesting discussion on the meaning of gauge symmetry breaking in general 
relativity. 
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